II B.Tech - II Semester – Regular / Supplementary Examinations MAY - 2023

ELECTROMAGNETIC FIELDS & WAVES (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours

Code: 20BS1402

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max.	
					Marks	
		UNIT-I				
1	a)	Develop the relation between the	L3	CO2	7 M	
		electrostatic potential and electric field				
		intensity.				
	b)	Develop the expression for electric field	L3	CO2	7 M	
		intensity at a point 'P' due to an infinite				
		line charge of density ' ρ_L ' C / m.				
OR						
2	a)	State and explain Gauss's law and write	L2	CO1	7 M	
		limitations of Gauss's law.				
	b)	Four point charges each of 10µC are placed	L3	CO2	7 M	
		in free space at the points $(1, 0, 0)$, $(-1, 0, 0)$				
		0), $(0,1,0)$ and $(0,-1,0)$ m respectively.				
		Calculate the force on a point charge of				
		30μ C located at a point (0, 0, 1) m.				

Max. Marks: 70

		UNIT-II			
3	a)	Develop the expressions for magnetic field intensity due to finite and infinite line current element.	L3	CO2	7 M
	b)	Given magnetic flux density $\vec{B} = \rho Sin \emptyset \ \vec{a_{\emptyset}}$. Find the total flux crossing	L3	CO2	7 M
		through the surface defined by $\emptyset = \frac{\pi}{4}$, $1 \le \rho \le 2$ and $0 \le z \le 5$.			
	1	OR		11	
4	a)	Define and explain biot –savarts law.	L2	CO1	7 M
	b)	Develop an expression for energy stored	L3	CO2	7 M
		and energy density in the magnetic field.			
		UNIT-III			
5	a)	Withnecessaryexplanation,solveMaxwell's equations for time varying fieldsin differential and integral forms.	L3	CO1, CO3	7 M
	b)		L3	CO3	7 M
	1	OR		11	
6	a)	Develop an expression for the displacement current density.	L3	CO3	7 M
	b)	Explain Farday's Law of Electromagnetic induction.	L2	CO1	7 M

		UNIT-IV					
7	a)	Solve the expression for the attenuation constant, phase constant, and intrinsic impedance for a uniform plane wave in a	L3	CO3	7 M		
	b)	good conductor.	1.2	CO^2	7 M		
	b)	Discuss about the plane waves in lossy dielectrics.	L2	CO3	7 M		
OR							
8	a)	State and Prove Poynting Theorem. Write its applications.	L3	CO3	7 M		
	b)	Find the skin depth at a frequency of 1.6	L3	CO3	7 M		
		MHz in aluminium σ = 38.2 ms/m and					
		$\mu_r = 1.$					
UNIT-V							
9	a)	Examine the expressions for the	L4	CO4	10 M		
		transmission and reflection coefficients at					
		the interface of two media for normal					
		incidence on dielectric.					
	b)	A parallel polarized wave propagates from	L3	CO4	4 M		
		air into a dielectric at a Brewster angle of					
		75° . Find \mathcal{E}_{γ} .					
OR							
10	a)	Define Brewster angle and Analyze that	L4	CO4	7 M		
		$\tan \theta_B = \sqrt{\frac{\varepsilon_2}{\varepsilon_1}} .$					
	b)	Explain Reflection by a perfect conductor	L4	CO4	7 M		
		for oblique incidence.					